Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components.
نویسندگان
چکیده
Electrophysiological studies on female An. gambiae s.s. mosquitoes revealed a receptor neuron within a subpopulation of the antennal grooved-peg sensilla sensitive to the odour of incubated sweat, but not responding to fresh sweat. This receptor neuron was sensitive to ammonia as well, a sweat-borne component which attracts female An. gambiae in a windtunnel bioassay. Neurons innervating a different subpopulation of grooved-peg sensilla did not show a response to incubated sweat. In the latter sensilla, however, one type of neuron responded to water or water containing solutions, while another receptor neuron was inhibited when stimulated with dry air, ether or ethanol. Neurons innervating sensilla trichodea, a more abundant antennal type of olfactory sensillum, did not respond to fresh or incubated sweat at the doses offered. However, receptor neurons within the sensilla trichodea responded with excitation to several sweat-borne components. A subpopulation of the sensilla trichodea was innervated by neurons sensitive to geranyl acetone. A second subpopulation housed receptor neurons sensitive to indole. 3-Methyl-1-butanol and 6-methyl-5-hepten-2-one evoked excitation of receptor neurons within both subpopulations of sensilla trichodea. Neurons were most sensitive to indole and geranyl acetone with a threshold of 0.01%. These findings are discussed in the context of host-seeking behaviour.
منابع مشابه
Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae
Anopheles gambiae is the principal Afrotropical vector for human malaria, in which olfaction mediates a wide range of both adult and larval behaviors. Indeed, mosquitoes depend on the ability to respond to chemical cues for feeding, host preference, and mate location/selection. Building upon previous work that has characterized a large family of An. gambiae odorant receptors (AgORs), we now use...
متن کاملMolecular basis of odor coding in the malaria vector mosquito Anopheles gambiae.
A systematic functional analysis across much of the conventional Anopheles gambiae odorant receptor (AgOR) repertoire was carried out in Xenopus oocytes using two-electrode, voltage-clamp electrophysiology. The resulting data indicate that each AgOR manifests a distinct odor-response profile and tuning breadth. The large diversity of tuning responses ranges from AgORs that are responsive to a s...
متن کاملAntennal-Expressed Ammonium Transporters in the Malaria Vector Mosquito Anopheles gambiae
The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming...
متن کاملOrganization of olfactory centres in the malaria mosquito Anopheles gambiae
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory ...
متن کاملOdor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae
BACKGROUND Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. RESULTS Here, we use molecular and physiological approaches coupled with sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of insect physiology
دوره 47 4-5 شماره
صفحات -
تاریخ انتشار 2001